Day 57: Why I Don’t Want To Tell Kids What To Do

20131120_193722

 

Recently I find that every time I say something like “the best way to approach this problem is…”, kids find a clever, elegant, or just different way to approach it. The force addition diagrams above are a great example.

##BFPM ##representations


Day 56: Problem Solving

2013-11-18 08.54.28

 

The kids had some pretty awesome problem solving going on today.

2013-11-18 09.56.35

 

##BFPM ##representations


Day 55: Sold on Force Addition Diagrams

2013-11-19 10.34.29

 

I’ve probably written about this before, but Kelly sold me on force addition diagrams last year and I don’t think I’ll ever look back. So far I haven’t come across a situation that I’d rather use components on. This was from the problem below, we spent a whole hour on it. At this point this group was still wrestling with how to use the FAD to solve the problem.

Screen Shot 2013-11-20 at 9.36.50 PM

 

##BFPM ##representations


Day 53: Equal vs. Balanced

2013-11-15 10.04.07

 

My students are struggling on the difference between equal and balanced. This is what I wrote on the board, but not sure I like it. Thoughts?

##BFPM


Day 52: Newton’s 3rd Law Demos

20131114_125328

Today I led the classes in a series of Newton’s 3rd Law demonstrations. We learned the above demonstration from Eric Gettrust, our Modeling Instruction leader, which he published in The Physics Teacher. The purpose of this demo is to model the interaction between a person and the Earth, showing that the attraction force itself is equal though there is a greater effect on the smaller object. Close up below.

20131114_125334

I also do car crashes (picture below), tug of war with two force detectors, and the class favorite, chest bumps with force plates.

20131114_125300

 

##BFPM 


Day 50: They Continue to Blow Me Away

P1 Practice 3 #2

 

P1 Practice 3 #3

 

We have done very little problem solving with BFPM, so naturally I left my students to work on it themselves. I had an all-day meeting for science articulation, and the directions I left were for each group to whiteboard problem 2, circle up, debate and choose a best answer, take a picture and send it to me. Then repeat with problem 2. I can’t wait to check in with them tomorrow about how it went, specifically discussing 3b. Other classes below.  Oh yeah, the problems are from Practice 3 here.

Practice 3 #2 Practice 3 #3

 

Practice 3 #2 Practice 3 #3


Day 49: More Rooted Misconceptions

20131111_090353

 

In this scenario a sled was being pushed at a constant velocity 2 m/s, then the following question was asked;

c. Describe, in terms of the amount of force he would have to apply, what the player would have to do to make the sled move with a constant velocity of 3.0 m/s. Assume that the frictional force between the grass and the sled remains the same under all circumstances. Illustrate your answer with diagrams and/or graphs as appropriate.

 It continually astounds me that even though we have had days of conversations about constant velocity and balanced forces, the idea that a higher speed requires more force is firmly rooted in their brains. Another group gave pretty much the same reasoning below. The only way we can expunge misconceptions is to address them head on!

20131111_095725

 

##BFPM ##misconceptions